
Implemntation of dependent type theory

27/09/2023

Introduction
We try to describe what should be the values for an implementation of the poset model and then what
should be the main algorithms.

We write ϕ, ψ, . . . for the cofibrations, and we have a type of cofibrations Φ. We also have an interval
type I.

We have two levels of closures (λx:At)ρ where t is a term and ρ an environment, and (λzv)α where v
is a value and α an interval substitution of the form z1 = e1, . . . , zn = en.

Ideally, I would like an implementation with head linear reduction and with the new representation
of proposition truncation, as the data type generated by constructors inc u and ext u [ψ 7→ v] (which is
equal to v on ψ).

Values
v ::= kv[ψ 7→ v] | (λxt)ρ | (λz v)α | v, v | V | cv | hcv

V ::= Π v v | Σ v v | U | Path v v v | Ext v [ψ 7→ (v, w,w′)]

cv ::= coe r0 r1 v | coe r0 r1 (λzΠ v v)α v0 | coe r0 r1 (λzΣ v v)α v0

hcv ::= hcomp r0 r1 v [ψ 7→ v] | hcomp r0 r1 (Π v v) [ψ 7→ v] v0 | hcomp r0 r1 (Σ v v) [ψ 7→ v] v0

k ::= x | k v | k r | coe r0 r1 (λzk)α v0 | hcomp r0 r1 k [ψ 7→ v] v0 | k.1 | k.2

ρ ::= () | Dρ | ρ, x = v α ::= () | α, z = r

Here r is an interval (lattice) expression.
We can choose to have interval expression as values.
We define substitution on values; the main clauses are for ρα

()α = () (ρ, x = v)α = (ρα, x = vα) (Dρ)α = D(ρα)

and for βα
()α = α (β, x = e)α = (βα, x = eα)

α represents a map between two stages. The substitution () corresponds to going from a stage X to a
stage X, z1, ψ, z2, . . . obtained by adding more interval variables and constraints. A substitution (z = r)
should correspond to a substitution X → X, z, ψ so that ψ(z = r) is true at stage X.

1

Main functions
The suggestion is to follow the algorithms for the cartesian version, but to use connections for the fact
that singleton are contractible. Actually, the contractibility of singleton is also expressed by the hcomp
function. (There are two notions of contractibility: the one expressing that any partial element can be
extended to a total element, and the one coming from type theory with a center of contraction.)

The main functions seem to be eval and application on values.

These two functions on values have as parameter the stage of evaluation X (which is a presentation
of a distributive lattice).

For instance when we evaluate [ψ 7→ t] at stage X and environment ρ we should evaluate t at stage
X,ψ and environment ρ.

The stage can only be modified by adding fresh interval variables or adding new constraints.

I explain application on values w u.
If w is a closure (λx:At)ρ then we evaluate t(ρ, x = u).
If w is a closure (λzv)α then u is an interval expression r and we evaluate v(α, z = r).
If w is of the form coe r0 r1 L then L is a line value. If it is not in the form (λzV)α where V is Π,Σ

or Path then we generate a fresh interval variable z and evaluate L z at the stage X, z getting a value
V . We put then L in the form (λzV)().

Some examples
We define an auxiliary function comp

comp r0 r1 L [ψ 7→ u] u0 = hcomp r0 r1 (L r1) [ψ 7→ (λzcoe z r1 L (u z))()] (coe r0 r1 L u0)

This function takes an extra argument X which is the stage at which we do the computation in order
to be able to generate the fresh variable z.

Here are some clauses for coe

coe r0 r1 (λzΠ A B)α u0 a1 =
coe r0 r1 (λz′B (α, z = z′)(coe r1 z

′ (λzA)α a1))() (u0 (coe r1 r0 (λzA)α a1))

(coe r0 r1 (λzΣ A B)α u0).1 =
coe r0 r1 (λzA)α u0.1

(coe r0 r1 (λzΣ A B)α u0).2 =
coe r0 r1 (λz′B (α, z = z′)(coe r0 z

′ (λzA)α u0.1))() u0.2

coe r0 r1 (λzPath A a b)α u0 r =
comp r0 r1 (λzA)α [r = 0 7→ (λza)α, r = 1 7→ (λzb)α] (u0 r)

The definition of hcomp U will use the Ext (Glue) constructor and the most complex functions ar coe
and hcomp for Ext types.

Here are some clauses for hcomp.
hcomp r0 r1 (Π A B) [ψ 7→ u] u0 a =
hcomp r0 r1 (B a) [ψ 7→ (λz (u z a))()](u0 a)

(hcomp r0 r1 (Σ A B) [ψ 7→ u] u0).1 =
hcomp r0 r1 A [ψ 7→ u.1] u0.1

(hcomp r0 r1 (Σ A B) [ψ 7→ u] u0).2 =
comp r0 r1 (λzB (hcomp r0 z [ψ 7→ u.1] u0.1))() [ψ 7→ u.2] u0.2

hcomp r0 r1 (Path A a b) [ψ 7→ u] u0 r =
hcomp r0 r1 A [ψ 7→ (λzu z r)(), r = 0 7→ (λza)(), r = 1 7→ (λzb)()] (u0 r)

2

Here to simplify, we have written u.1 for (λz(u z).1)() and u.2 for (λz(u z).2)().

Some combinators
In the implementation of cubicaltt, it was found convenient to introduce some combinators that are
obtained as evaluation of terms. For instance we have

id = (λAλxx)()

so that id A is the identity function for A. We can also define

Fib = (λAλBλfλaΣb:BPath A (f b) a)()

so that Fib A B w u is the fiber of w at u, and let D be the definition

D = [isContr : U → U = λAΣaΠxPath A a x]

so that isContrD A is the value for the fact that A is contractible.

We also have

isEquiv = (λA:UλB:Uλf :B→AΠa:AisContr(Σb:BPath A (f b) a))D

so that isEquiv A B w expresses that w is an equivalence.
We shall also need a combinator expressing that the identity is an equivalence. This is the proof that

singleton are contractible, which is simple if we have connections.

isEquivId = (λA:Uλa:A((a, z.a), λv:Σx:APath A a x(v.2, z
′.v.2(z ∧ z′))))()

If c a value of type isContr A, so that c is convertible to a pair a0, p, with p a being a path in
Path A a0 a, we can use this to define a function that extends a partial element of A to a total element

wid A (a0, p) [ψ 7→ u] = hcomp 0 1 A [ψ 7→ p u] a0

Glue/Ext type
A canonical type at stage X can be of the form E = Ext A [ϕ 7→ (B,w,w′)] where ϕ 6= 1 at stage X and
we have A = B on ϕ and w : B → A and w′ a proof that w is an equivalence. The elements of this type
are pairs (a, b) where a is in A and b in B and w b = a on ϕ.

We have the function ext w of type E → A which is defined by ext w (a, b) = a in such a way that
ext w : E → A extends the given partial function w : B → A.

Homogeneous composition
hcomp r0 r1 E [ψ 7→ u] u0 is defined in the following way. First we can always write u = (a, b) and
u0 = (a0, b0). The output should be a1, b1 where

b̃ = λzhcomp r0 z B [ψ 7→ b] b0 b1 = b̃ r1

and
a1 = hcomp r0 r1 A [ψ 7→ a, ϕ 7→ (λzw (b̃ z))()] a0

Note that we don’t use w′ in this computation.

3

Coerce function for Glue type
The last case is coerce for E and hcomp for U .

The case coe r0 r1 (λzE)() (a0, b0) is the most complex one.
The value w′ should be a witness that w is an equivalence. Using w′(r1) and the combinators wid

and Fib, we can define a function f1, defined for values at stage X,ϕ, which takes as argument a in A(r1)
and b with a path ω in Path A(r1) (w(r1) b) a only defined on ψ 6 ϕ(r1) and which produces as output
a pair b̃, ω̃ on ϕ(r1) which extends b, ω.

We start by computing δ = ∀zϕ. Using coe for A and B we compute ã line in A which is a0 at r0
and b̃, defined on δ, line in B which is b0 at r0. Using then the type Path A (w b̃) ã we can compute by
coe an element in Path A(r1) (w(r1) b̃(r1)) ã(r1) on δ. Using the function f1, we get an element b1 in
B(r1) and a path connecting w(r1) b1 and ã(r1), furthermore such that b1 = b0 on r0 = r1. Using hcomp
for A(r1) we then get an element a1 in A(r1) which extends w(r1) b1 and is equal to a0 on r0 = r1. The
pair a1, b1 is the value of coe r0 r1 (λzE)() (a0, b0).

Homogeneous composition for universes
The remaining case is hcomp r0 r1 U [ψ 7→ A] A0. For this we compute for z a witness w′(z) that
coe z r0 A is an equivalence between A(z) and A(r0). For this, we define the line of types L =
λz isEquiv A(z) A(r0) (coe z r0 A). Note that L(r0) expresses that the identity function of A(r0) is an
equivalence. We have an element of L(r0) which is isEquivId A(r0). We define

w′(z) = coe r0 z L (isEquivId A(r0))

The result is then Ext A0 [ψ 7→ (A(r1), coe r0 r1 A,w
′(r0)), r0 = r1 7→ (A0, id A0, isEquivId A0)]

Univalence
Univalence can be formulated as the type ΠA:U isContr (ΣX:UEquiv X A).

4

